Home » List of Examinations » AIPMT Examination » AIPMT Exam Syllabus
AIPMT 2024 Physics Syllabus Unit: 1 Introduction and Measurement What is Physics? Scope and excitement; Physics in relation to science, society and technology; Need for measurement of physical quantities, units for measurement, systems of units-SI : fundamental and derived units. Dimensions of physical quantities. Dimensional analysis and its applications. Orders of magnitude, Accuracy and errors in measurement � random and instrumental errors, Significant figures and rounding off the numbers. Graphs, Trigonometric functions, Concepts of differentiation and integration. Unit: 2 Description of Motion in One Dimension
Objects in motion in one dimension, Motion in straight line, Uniform and non-uniform motion, its graphical representation and formulae, speed and velocity, relative velocity, average speed and instantaneous velocity. Uniformly accelerated motion, velocity-time graph, position-time graph and their formulae. Relations for uniformly accelerated motion with examples. Acceleration in one-dimensional motion.
Unit: 3 Description of Motion in Two and Three Dimensions
Vectors and scalars quantities, vectors in two and three dimensions, vector addition and multiplication by a real number, null-vector and its properties. Resolution of a vector in a plane, rectangular components. Scalar and vector products. Motion in two dimensions, cases of uniform velocity and uniform acceleration-projectile motion, general relation among position-velocity-acceleration for motion in a plane and uniform circular motion. Motion of objects in three dimensional space (elementary ideas).
Unit: 4 Laws of Motion
Force and inertia, first law of motion. Momentum, second law of motion, impulse, examples of different kinds of forces in nature. Third law of motion, conservation of momentum, rocket propulsion. Equilibrium of concurrent forces. Static and kinetic frictions, laws of friction, rolling friction, lubrication, Inertial and non-inertial frames (elementary ideas)
Unit: 5 Work, Energy and Power
Work done by a constant force and by a variable force, unit of work, energy and power. Work Energy Theorem. Elastic and in-elastic collisions in one and two dimensions. Notions of potential energy, conservation of mechanical energy: gravitational potential energy, and its conversion to kinetic energy, potential energy of a spring. Conservative forces. Different forms of energy, mass-energy equivalence, conservation of energy.
Unit: 6 Rotational Motion
Centre of mass of a two-particle system, momentum conservation and centre of mass motion. Centre of mass of rigid body, general motion of a rigid body, nature of rotational motion, rotational motion of a single particle in two dimensions only, torque, angular momentum and its geometrical and physical meaning, conservation of angular momentum, examples of circular motion (car on a level circular road, car on banked road, pendulum swinging in a vertical plane). Moment of inertia, its physical significance, moment inertia of uniform bodies with simple geometrical shapes, parallel axis and perpendicular axis theorem (statements only), Comparison between translatory (linear) and rotational motion.
Unit: 7 Gravitation
Acceleration due to gravity, one and two dimensional motion under gravity. Universal law of gravitation, inertial and gravitational mass, variations in the acceleration due to gravity of the earth, statement of Kepler�s laws of planetary motion, orbital velocity, geostationary satellites, gravitational potential, gravitational potential energy near the surface of earth, escape velocity, weightlessness.
Unit: 8 Heat and Thermodynamics
Thermal equilibrium and temperature ( zeroth law of thermodynamics). Heat, work and internal energy. Specific heat, specific heat at constant volume and constant pressure of ideal gas and relation between them. First law of thermodynamics. Thermodynamic state, equation of state and isothermals, pressure-temperature phase diagram. Thermodynamic processes (reversible, irreversible, isothermal, adiabatic). Carnot cycle, second law of thermodynamics, efficiency of heat engines. Entropy. Transfer of heat conduction, convection and radiation. Newton�s law of cooling.
Thermal conductivity. Black body radiation, Wien�s law, Solar constant and surface temperature of the sun, Stefan�s law,
Unit: 9 Oscillations
Periodic and oscillatory motions. Simple harmonic motion (S.H.M.) and its equation of motion. Oscillations due to a spring, kinetic energy and potential energy in S.H.M., Simple pendulum, physical concepts of forced oscillations, resonance and damped oscillations; Simple examples.
Unit: 10 Waves
Longitudinal and transverse waves and wave motion, speed of progressive wave. Principle of superposition of waves; reflection of waves, harmonic waves (qualitative treatment only), standing waves. Normal modes and its graphical representation. Beats, Doppler effect.
Unit: 11 Electrostatics
Frictional electricity, charges and their conservation, unit of charge, Coulomb�s law, dielectric constant, electric field, electric field due to a point charge, electric potential � its physical meaning, potential due to a di-pole, di-pole field and behaviour of dipole in a uniform (2-dimensional) electric field. Flux, Statement of Gauss�s theorem and its applications to find electric field due to uniformly charged simple systems. Conductors and insulators, presence of free charges and bound charges inside a conductor, Capacitance (parallel plate), Dielectric material and its effect on apacitance (concept only), capacitances in series and parallel, energy of a capacitor. Van de Graff generator.
Unit: 12 Current Electricity
Introduction (flow of current), sources of e.m.f., cells : simple, secondary, chargeable, combinations of cells in series and parallel. Electric current, resistance of different materials, temperature dependence, thermistor, specific resistivity, colour code for carbon resistors. Ohm�s law and its limitation. Superconductors (elementary ideas). Kirchoff�s laws, resistances in series and parallel, Wheatstone�s bridge, measurement of resistance. Potentiometer � measurement of e.m.f. and internal resistance of a cell.
Unit: 13 Thermal and Chemical Effects of Currents
Electric power, heating effects of current and Joule�s law. Thermoelectricity: Seebeck effect, measurement of temperature using thermocouple. Chemical effects and Faraday�s laws of electrolysis.
Unit: 14 Magnetic Effect of Currents
Oersted�s observation, Biot-Savart�s law (magnetic field due to an element of current), magnetic field due to a straight wire, circular loop and solenoid. Force on a moving charge in a uniform magnetic field (Lorentz force), cyclotron (simple idea), forces and torques on currents in a magnetic field, forces between two currents, definition of ampere, moving coil galvanometer, ammeter and voltmeter. Conversion of galvanometer into voltmeter / ammeter.
Unit: 15 Magnetism
Bar magnet (comparison with a solenoid), magnetic lines of force, torque on a bar magnet in a magnetic field, earth�s magnetic field as a bar magnet, tangent galvanometer, vibration magnetometer. Ferromagnetic substances with examples (simple idea). Electromagnets and permanent magnets.
Unit: 16 Electromagnetic Induction and Alternating Currents
Faraday�s Law of electromagnetic induction, Lenz�s Law, induced emf, self and mutual inductance. Alternating current, and voltage, impedance and reactance; A.C. circuits containing inductance, capacitance and resistance; phase relationships, and power in a.c. circuits, L.C oscillations. Electrical machines and devices (transformer, induction coil, generator, simple motors, choke and starter), eddy current.
Unit: 17 Electromagnetic Waves (Qualitative Treatment)
Electromagnetic oscillations, brief history of electromagnetic waves (Maxwell, Hertz, Bose, Marconi). Electromagnetic spectrum (radio, micro-waves, infra-red, optical, ultraviolet, X-rays, gamma rays) including elementary facts about their uses, propagation of electromagnetic waves in atmosphere.
Unit: 18 Ray Optics and Optical Instruments
Ray optics as a limiting case of wave optics. Phenomena of reflection, refraction, and total internal reflection. Optical fibre. Curved mirrors, lenses; mirror and lens formulae. Dispersion by a prism. Spectrometer. Absorption and emission spectra. Scattering and formation of rainbow. Telescope (astronomical), microscope, their magnifications and resolving powers.
Unit: 19 Electrons and Photons
Discovery of electron, e / m for an electron, electrical conduction in gases, photoelectric effect, particle nature of light, Einstein�s photoelectric equation, photocells. Matter waves � wave nature of particles, de-Broglie relation, Davison and Germer experiment.
Unit: 20 Atoms, Molecules and Nuclei
Rutherford model of the atom, Bohr model, energy quantization. Hydrogen spectrum. Composition of nucleus, atomic masses, binding energy per nucleon of a nucleus, its variation with mass number, isotopes, size of nucleus. Radioactivity: properties of a, � and ? rays. Mass energy relation, nuclear fission and fusion.
Unit: 21 Solids and Semiconductor Devices
Crystal structure-Unit cell; single, poly and liquid crystals (concepts only). Energy bands in solids, difference between conductors, insulators and semi-conductors using band theory. Intrinsic and extrinsic semiconductors, p-n junction, semiconductor diodes, junction transistor, diode as rectifier, solar cell, photo diode, LED, Zener diode as a voltage regulator, transistor as an amplifier and oscillator. Combination of gates. Elementary ideas about IC.
AIPMT 2024 Chemistry Syllabus
Unit: 1 Some basic concepts in Chemistry
Importance of Chemistry, physical quantities and their measurement in Chemistry, SI Units, uncertainty in measurements and use of significant figures, Unit and dimensional analysis, Matter and its nature, laws of chemical combinations, atomic, and molecular, masses mole concept, molar masses, percentage composition and molecular formula, chemical stoichiometry.
Unit: 2 States of matter
Three states of matter, gaseous state, gas laws (Boyle�s Law and Charles Law), Avogadro�s Law, Grahams�Law of diffusion
Dalton�s law of partial pressure, ideal gas equation, Kinetic theory of gases, real gases and deviation from ideal behaviour, van der Waals� equation, liquefaction of gases and critical points, Intermolecular forces; liquids and solids.
Unit: 3 Atomic structure
Earlier atomic models (Thomson�s and Rutherford) , emission spectrum of hydrogen atom, Bohr�s model, of hydrogen atom, Limitations of Bohr�s model, dual nature of matter and radiation, Heisenberg uncertainty principle, quantum mechanical model of atom (quantum designation of atomic orbitals and electron energy in terms of principal, angular momentum and magnetic quantum numbers), electronic spin and spin quantum numbers, Pauli�s exclusion principle, general idea of screening (constants) of outer electrons by inner electrons in an atom, Aufbau principle, Hund�s rule, atomic orbitals and their pictorial representation, electronic configurations of elements.
Unit: 4 Classification of elements and periodicity in properties
Need and genesis of classification of elements (from Doebereiner to Mendeleev), Modern periodic law and present form of periodic table, Nomenclature of elements with atomic number > 100, electronic configurations of elements and periodic table, electronic configuration and types of elements and s, p, d and f blocks, periodic trends in properties of elements (atomic size, ionization enthalpy, electron gain enthalpy, valence/ oxidation states and chemical reactivity).
Unit: 5 Chemical energetics
Some basic concepts in thermodynamics, first law of thermodynamics, heat capacity, measurement of ?U and ?H, calorimetry, standard enthalpy changes, thermochemical equations, enthalpy changes during phase transformations, Hess�s Law, standard enthalpies of formation, bond enthalpies and calculations based on them.
Unit: 6 Chemical bonding
Kossel -Lewis approach to chemical bond formation, ionic bonds, covalent bonds, polarity of bonds and concept of electronegativity, valence shell electron pair repulsion (VSEPR) theory , shapes of simple molecules, valence bond theory, hybridization involving s, p and d orbitals and shapes of molecules s and p bonds; Molecular orbital theory involving homounclear diatomic molecules; Hydrogen-bonding.
Unit: 7 Equilibrium
Equilibrium in physical and chemical processes
Equilibrium in physical and chemical processes, dynamic equilibrium, law of chemical equilibrium and equilibrium constant, homogeneous equilibrium, heterogenous equilibrium, application of equilibrium constants, Relationship between reaction quotient Q, equilibrium constant, K and Gibbs� energy G; factors affecting equilibrium-Le Chateliar�s principle.
Ionic equilibrium
Acids, Bases and Salts and their ionization, weak and strong electrolytes degree of ionization and ionization constants, concept of pH, ionic product of water, buffer solution, common ion effect, solubility of sparingly soluble salts and solubility products.
Unit: 8 Redox reactions
Electronic concepts of reduction - oxidation, redox reactions, oxidation number, balancing of redox reactions.
Unit: 9 Solid state Chemistry
Classification of solids based on different binding forces: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids; unit cells in two dimensional and three dimensional lattices, calculation of density of a unit cell, packing in solids, voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties.
Unit: 10 Chemical thermodynamics
Spontaneous processes, energy and spontaneity , entropy and second law of thermodynamics, concept of absolute entropy, Gibbs energy and spontaneity, Gibbs energy change and equilibrium constant.
Unit: 11 Solutions
Types of solutions, different units for expressing concentration of solution, mole fraction, percentage (by volume and mass both), definitions of dilute solutions, vapour pressure of solutions and Raoult�s Law, Colligative properties, lowering of vapour pressure, depression of freezing point, elevation of boiling points and osmotic pressure, determination of molecular masses using colligative properties, abnormal values of molecular masses, van�t Hoff factor. simple numerical problems.
Unit: 12 Chemical kinetics
Rate of chemical reactions, factors, affecting rates of reactions � concentration, temperature and catalyst, order and molecularity of reactions, rate law and rate constant, differential and integral forms of first order reaction, half-life (only zero and first order) characteristics of first order reaction, effect of temperature on reactions, Arrhenius theory activation energy, collision theory of reaction rate (no derivation).
Unit: 13 Electrochemistry
Conductance in electrolytic solutions, specific and molar conductivity, variation of conductivity with concentration, Kohlrausch�s law, electrolysis and laws of electrolysis (elementary idea), electrolytic and galvanic cells, emf. of a cell, standard electrode potential, Nernst equation, concentration cell, fuel cells, cell potential and Gibbs energy, dry cell and lead accumulator.
Unit: 14 Surface chemistry
Adsorption - physisorption and chemisorption, factors affecting adsorption of gases on solids, catalysis, homogeneous and heterogeneous activity and selectivity, enzyme catalysis, colloidal state, distinction between true solutions, colloids and suspensions; lyophillic, lyophobic, multimolecular and macromolecular colloids, properties of colloids, Tyndal effect, Brownian movement, electrophoresis, coagulation, emulsions - type of emulsions.
Unit: 15 Hydrogen
Position of hydrogen in periodic table, isotopes of hydrogen, heavy water, hydrogen peroxide-preparation, reactions and structures; hydrides and their classification.
Unit: 16 s-Block Elements (Alkali and Alkaline Earth metals):
Group 1 and Group 2 elements Electronic configurations and general trends in physical and chemical properties, anomalous properties of the first element of each group, diagonal relationship. Preparation and properties of some important compounds, sodium carbonate, sodium hydroxide, sodium hydrogen carbonate and industrial uses of lime and limestone, biological significance of Na, K, Mg and Ca.
Unit: 17 General principles and processes of isolation of elements
Principles and methods of extraction - concentration, reduction, (chemical and electrolytic methods), and refining.
Occurrence and principles of extraction of Al, Cu, Zn and Fe.
AIPMT 2024 Biology Syllabus
Unit: 1 Diversity in Living World
Biology � its meaning and relevance to mankind
What is living; Taxonomic categories and aids (Botanical gardens, herbaria, museums, zoological parks); Systematics and Binomial system of nomenclature.
Introductory classification of living organisms (Two-kingdom system, Five-kingdom system); Major groups of each kingdom alongwith their salient features (Monera, including Archaebacteria and Cyanobacteria, Protista, Fungi, Plantae, Animalia); Viruses; Lichens
Plant kingdom � Salient features of major groups (Algae to Angiosperms);
Animal kingdom � Salient features of Nonchordates up to phylum, and Chordates up to class level.
Unit: 2 Cell : The Unit of Life; Structure and Function
Cell wall; Cell membrane; Endomembrane system (ER, Golgi apparatus / Dictyosome, Lysosomes, Vacuoles); Mitochondria; Plastids; Ribosomes; Cytoskeleton; Cilia and Flagella; Centrosome and Centriole; Nucleus; Microbodies.
Structural differences between prokaryotic and eukaryotic, and between plant and animal cells. Cell cycle (various phases); Mitosis; Meiosis.
Biomolecules � Structure and function of Carbohydrates, Proteins, Lipids, and Nucleic acids.
Enzymes � Chemical nature, types, properties and mechanism of action.
Unit: 3 Genetics and Evolution
Mendelian inheritance; Chromosome theory of inheritance; Gene interaction; Incomplete dominance; Co-dominance; Complementary genes; Multiple alleles;
Linkage and Crossing over; Inheritance patterns of hemophilia and blood groups in humans.
DNA �its organization and replication; Transcription and Translation; Gene expression and regulation; DNA fingerprinting.
Theories and evidences of evolution, including modern Darwinism.
Unit: 4 Structure and Function � Plants
Morphology of a flowering plant; Tissues and tissue systems in plants;
Anatomy and function of root, stem(including modifications), leaf, inflorescence, flower (including position and arrangement of different whorls, placentation), fruit and seed; Types of fruit; Secondary growth;
Absorption and movement of water (including diffusion, osmosis and water relations of cell) and of nutrients; Translocation of food; Transpiration and gaseous exchange; Mechanism of stomatal movement.
Mineral nutrition � Macro- and micro-nutrients in plants including deficiency disorders; Biological nitrogen fixation mechanism.
Photosynthesis � Light reaction, cyclic and non-cyclic photophosphorylation; Various pathways of carbon dioxide fixation; Photorespiration; Limiting factors.
Respiration � Anaerobic, Fermentation, Aerobic; Glycolysis, TCA cycle; Electron transport system; Energy relations.
Unit: 5 Structure and Function - Animals
Tissues;
Elementary knowledge of morphology, anatomy and functions of different systems of earthworm, cockroach and frog.
Human Physiology � Digestive system - organs, digestion and absorption; Respiratory system � organs, breathing and exchange and transport of gases. Body fluids and circulation � Blood, lymph, double circulation, regulation of cardiac activity; Hypertension, Coronary artery diseases.
Excretion system � Urine formation, regulation of kidney function
Locomotion and movement � Skeletal system, joints, muscles, types of movement.
Control and co-ordination � Central and peripheral nervous systems, structure and function of neuron, reflex action and sensory reception; Role of various types of endocrine glands; Mechanism of hormone action.
Unit: 6 Reproduction, Growth and Movement in Plants
Asexual methods of reproduction; Sexual Reproduction - Development of male and female gametophytes; Pollination (Types and agents); Fertilization; Development of embryo, endosperm, seed and fruit (including parthenocarpy and apomixis).
Growth and Movement � Growth phases; Types of growth regulators and their role in seed dormancy, germination and movement; Apical dominance; Senescence; Abscission; Photo- periodism; Vernalisation; Various types of movements.
Unit: 7 Reproduction and Development in Humans
Male and female reproductive systems; Menstrual cycle; Gamete production; Fertilisation; Implantation; Embryo development; Pregnancy and parturition; Birth control and contraception.
Unit: 8 Ecology and Environment
Meaning of ecology, environment, habitat and niche.
Ecological levels of organization (organism to biosphere); Characteristics of Species, Population, Biotic Community and Ecosystem; Succession and Climax.
Ecosystem � Biotic and abiotic components; Ecological pyramids; Food chain and Food web; Energy flow; Major types of ecosystems including agroecosystem.
Ecological adaptations � Structural and physiological features in plants and animals of aquatic and desert habitats.
Biodiversity � Meaning, types and conservation strategies (Biosphere reserves, National parks and Sanctuaries)
Environmental Issues � Air and Water Pollution (sources and major pollutants); Global warming and Climate change; Ozone depletion; Noise pollution; Radioactive pollution; Methods of pollution control (including an idea of bioremediation); Deforestation; Extinction of species (Hot Spots).
Unit: 9 Biology and Human Welfare
Animal husbandry � Livestock, Poultry, Fisheries; Major animal diseases and their control. Pathogens of major communicable diseases of humans caused by fungi, bacteria, viruses, protozoans and helminths, and their control.
Cancer; AIDS.
Adolescence and drug / alcohol abuse;
Basic concepts of immunology.
Plant Breeding and Tissue Culture in crop improvement.
Biofertilisers (green manure, symbiotic and free-living nitrogen-fixing microbes, mycorrhizae);
Biopesticides (micro-organisms as biocontrol agents for pests and pathogens); Bioherbicides;
Microorganisms as pathogens of plant diseases with special reference to rust and smut of wheat, bacterial leaf blight of rice, late blight of potato, bean mosaic, and root - knot of vegetables.
Bioenergy � Hydrocarbon - rich plants as substitute of fossil fuels.
Unit: 10 Biotechnology and its Applications
Microbes as ideal system for biotechnology;
Microbial technology in food processing, industrial production (alcohol, acids, enzymes, antibiotics), sewage treatment and energy generation.
Steps in recombinant DNA technology � restriction enzymes, DNA insertion by vectors and other methods, regeneration of recombinants.
Applications of R-DNA technology. In human health �Production of Insulin, Vaccines and Growth hormones, Organ transplant, Gene therapy. In Industry � Production of expensive enzymes, strain improvement to scale up bioprocesses. In Agriculture � GM crops by transfer of genes for nitrogen fixation, herbicide-resistance and pestresistance including Bt crops.