Home » List of Examinations » BSNL JTO Examination » BSNL JTO Exam Syllabus
Negative marking is 33%. Generally cut-off for general category students is around 50-60 marks out of 150, which will be less for O.B.C/S.C/S.T category students. There will be no interview for final selection, criterion will be only written examination.The objective type examination shall be of 3 hours duration with one question paper containing 3 sections of Engineering Stream Section-I, Engineering Stream Section-II and General Ability Test Section-III. The Engineering Stream Section-I and Section-II would include 50 questions each and General Ability test Section-III would include 20 questions. However, there would be no separate time fixed for attempting the separate sectionsSECTION - I1. Materials and componentsStructure and properties of Electronic Engineering materials, Conductors, Semiconductors and Insulators, Magnetic, Ferroelectric, Piezoelectric, Ceramic, Optical and Superconducting materials. Passive components and characteristics, Resistors, Capacitors and Inductors; Ferrites, Quartz crystal, Ceramic resonators, Electromagnetic and Electromechanical components.2. Physical Electronics, Electron Devices and ICsElectrons and holes in semiconductors, Carrier Statistics, Mechanics of current flow in a semi-conductor, Hall effect; Junction theory; Different types of diodes and their characteristics; Bipolar Junction transistor; Field effect transistors; Power switching devices like SCRs, CTOs, power MOSFETs; Basics of ICs-bipolar, MOS and CMOS types; Basics of Opto Electronics.3. Network theoryNetwork analysis techniques: Network theorem, transient and steady state sinusoidal response, and Transmission criteria: delay and rise time Elmore's and other definition, effect of cascading. Elements of network synthesis.4. Electromagnetic TheoryTransmission lines: basic theory, standing waves, matching applications, micro strip lines; Basics of waveguides and resonators; Elements of antenna theory.5. Electronic Measurements and instrumentationBasic concepts, standards and error analysis; Measurements of basic electrical quantities and parameters; Electronic measuring instruments and their principles of working: analog and digital, comparison, characteristics, and applications. Transducers; Electronic measurements of non-electrical quantities like temperature, pressure, humidity etc. Basics of telemetry for industrial use.6. Power ElectronicsPower Semiconductor devices, Thyristor, Power transistor, MOSFETs, Characteristics and operation. AC to DC converters; 1-Phase and 3-phase DC-to-DC Converters.AC regulators. Thyristor controlled reactors, switched capacitor networks.Inverters: Single-phase and 3-phase. Pulse width modulation. Sinusoidal modulation with uniform sampling. Switched mode power supplies.SECTION-II1. Analog Electronic CircuitsTransistor biasing and stabilization, Small Signal analysis. Power amplifiers. Frequency response, Wide band techniques, Feedback amplifiers. Tuned amplifiers. Oscillators. Rectifiers and power supplies. Operational Amplifier, other linear integrated circuits and applications. Pulse shaping circuits and waveform generators.2. Digital Electronic CircuitsTransistor as a switching element; Boolean algebra, simplification of Boolean functions, Karnaugh Map and applications; IC Logic gates and their characteristics; IC logic families: DTL, TTL, ECL, NMOS, PMOS and CMOS gates and their comparison; Combinational logic circuits; Half adder, full adder; Digital Compartor; Multiplexer Demultiplexer; ROM and their applications. Flip-flops, R-S, J-K, D and T flip-flops; Different types of counters and registers; waveform generators. A/D and D/A convertors. Semiconductor memories.3. Control SystemsTransient and steady state response of control systems; Effect of feedback on stability and sensitivity, Root locus techniques; Frequency response analysis. Concepts of gain and phase margins; Constant-M and Constant-N Nichol's Chart; Approximation of transient response from Constant-N Nichol's Chart; Approximation of transient response from closed loop frequency response; Design of Control Systems, Compensators; Industrial controllers.4. Communication systemsBasic information theory: Modulation and detection in analogue and digital systems; Sampling and data reconstruction. Quantization & Coding; Time division and frequency division multiplexing; Equalisation; Optical Communication: in free space & fiber optic; Propagation of signals at HF, VHF, UHF and microwavefrequency; Satellite communication.5. Microwave EngineeringMicrowave Tubes and solid state devices, Microwave generation and amplifiers, Waveguides and other Microwave Components and Circuits, Microstrip circuits, Microwave antennas, Microwave Measurements, MASERS LASERS; Microwave Propogation. Microwave Communication Systems-terrestrial and satellite based.6. Computer EngineeringNumber Systems; Data representation; Programming; Elements of a high level programming language PASCAL/C; use of basic data structures; Fundamentals of computer architecture processor design; Control unit design; Memory organization. I/O System Organization. Personal computers and their typical uses.7. MicroprocessorsMicroprocessor architecture - Instruction set and simple assembly language programming. Interfacing for memory and I/O. Applications of Microprocessors in Telecommunications and power system.SECTION-IIIGeneral ability testThe candidate's comprehension and understanding of General English shall be tested through simple exercises. Questions on knowledge of current events and of such matter of everyday observation and experience in their scientific aspects as may be expected of an educated person. Questions will also be included on events and developments in Telecommunications, History of India and Geography. These will be of a nature, which can be answered without special study by an educated person.